

BUKU PEDOMAN PRAKTIKUM TEKNOLOGI BETON

PROGRAM STUDI SARJANA TERAPAN TEKNIK
INFRASTRUKTUR SIPIL DAN PERANCANGAN ARSITEKTUR
UNIVERSITAS DIPONEGORO
SEMARANG
2020

BUKU LAPORAN PRAKTIKUM TEKNOLOGI BETON

Disusun oleh:

KELOMPOK:

NAMA/NIM:1.

2.

3.

4.

PROGRAM STUDI SARJANA TERAPAN TEKNIK
INFRASTRUKTUR SIPIL DAN PERANCANGAN ARSITEKTUR
UNIVERSITAS DIPONEGORO
SEMARANG
2020

DAFTAR ISI

Buku Laporan Praktikum Teknologi Beton diketik komputer, disusun dan di jilid dalam Bab-bab dengan format sebagai berikut :

- 1. Cover warna biru Teknik
- 2. Kata Pengantar
- 3. Daftar Isi
 - Bab I PEMERIKSAAN ANALISA SARINGAN AGREGAT HALUS DAN AGREGAT KASAR.
 - Bab II PEMERIKSAAN KEAUSAN AGREGAT DENGAN MESIN LOS ANGELES

Bab III PENGUJIAN SLUMP BETON

Bab IV KUAT TEKAN BETON DENGAN MESIN COMPRESION

LAMPIRAN DATA HASIL PRAKTIKUM TEKNOLOGI BETON

DAFTAR PUSTAKA

KATA PENGANTAR

Buku Pedoman Praktikum Teknologi Beton Tahun 2020 dibuat untuk dapat dipakai mahasiswa sebagai pedoman, dalam melaksanakan Praktikum Teknologi Beton, di Laboratorium Teknologi Beton, Program Studi Studi Sarjana Terapan Teknik Infrastruktur Sipil dan Perancangan Arsitektur, Universitas Diponegoro, Semarang.

Maksud dilaksanakan Praktikum Teknologi Beton, adalah agar mahasiswa Program Studi Studi Sarjana Terapan Teknik Infrastruktur Sipil dan Perancangan Arsitektur, Universitas Diponegoro, Semarang. Mahasiswa diharapkan dapat mengerti dan memahami hal-hal yang berhubungan dengan Teknologi Beton, selama mahasiswa melaksanakan Praktikum Teknologi Beton, di Laboratorium Teknologi Beton, Program Studi Studi Sarjana Terapan Teknik Infrastruktur Sipil dan Perancangan Arsitektur, Universitas Diponegoro, Semarang.

Tujuan dilaksanakan Praktikum Teknologi Beton, adalah agar mahasiswa Program Studi Studi Sarjana Terapan Teknik Infrastruktur Sipil dan Perancangan Arsitektur, Universitas Diponegoro, Semarang. Setelah melaksanakan Praktikum Teknologi Beton, mahasiswa mengerti dan memahami hal-hal yang berhubungan dengan Teknologi Beton, tentang:

- Bentuk dan Sifat Agregat Halus dan Agregat Kasar.
- Berat Jenis dan Penyerapan Agregat Halus dan Agregat Kasar.
- Tingkat Kebersihan Agregat Halus (pasir) dengan Sand Equivalent Test.
- Keausan Agregat dengan Mesin Los Angeles.
- Tingkat Kelecekan Pasta Campuran Beton dengan Slump Test.
- Pembuatan Sampel Benda Uji, berbentuk Silinder Beton.
- Kuat Tekan Beton dengan Mesin Compression Test.
- Kuat Tekan Beton Karakteristik.
- Proporsi Campuran Agregat Kasar dan Agregat Halus.
- Proporsi Campuran Beton.
- Job Mix Design Campuran Beton.
- Rancangan Campuran Beton dengan Kuat Tekan Beton Karakteristik.

Semoga pengetahuan, pengertian dan pengalaman yang didapat mahasiswa selama melaksanakan Praktikum Teknologi Beton, di Laboratorium Teknologi Beton, Program Studi Studi Sarjana Terapan Teknik Infrastruktur Sipil dan Perancangan Arsitektur, Universitas Diponegoro, Semarang, dapat bermanfaat dan menambah ilmu pengetahuan, bagi mahasiswa dan perkembangan ilmu pengetahuan di kemudian hari.

LABORATORIUM TEKNOLOGI BETON
PROGRAM STUDI STUDI SARJANA TERAPAN
TEKNIK INFRASTRUKTUR SIPIL DAN
PERANCANGAN ARSITEKTUR,
UNIVERSITAS DIPONEGORO
SEMARANG

Plt. Koordinator Laboratorium Teknologi Beton

IR. H. SUHARJONO, Sp., MT. NIP. 195610021987101001

PEMERIKSAAN ANALISA SARINGAN AGREGAT HALUS DAN AGREGAT KASAR

I. PENDAHULUAN

Pada perancangan untuk campuran beton dibutuhkan agregat dengan gradasi baik, dimana kontak antar butir baik, dan porsi antara agregat kasar dan agregat halus berimbang secara proporsional.

Agar diperoleh agregat dengan gradasi baik dan memenuhi syarat maka dilakukan percobaan analisa saringan.

Maksud dari percobaan ini adalah untuk menentukan pembagian butir (gradasi) agregat halus dan agregat kasar dan untuk mendapatkan kombinasi yang baik antara agregat halus dan agregat kasar yang bergradasi baik dan memenuhi syarat.

Pengujian dilakukan pada agregat yang akan digunakan sebagai bahan campuran beton, dengan mengambil sample untuk benda uji seberat yang disyaratkan.

II. STANDAR PEMERIKSAAN

- AASHTO T-27-74
- ASTMC-136-46

III. PERALATAN DAN BENDA UJI

A. Peralatan

- a. Timbangandan neraca dengan ketelitian 0,2 % dari berat benda uji.
- b. Satu set saringan W\3/8", No.4, No.8, No.30, No.50, No.100, No.200.
- c. Oven yang dilengkapi pengatur suhu untuk pemanasan sampai 110° C.
- d. Alat pemisah contoh.
- e. Mesin pengguncang saringan.
- f. Talam.
- g. Kuas, sikat kuningan, sendok dan alat lainnya.

B. BENDA UJI

a. Agregat halus (pasir)

Ukuran maksimum no. 4
 Ukuran maksimum no. 6
 berat minimum 500 gram
 berat minimum 100 gram

b. Agregat kasar (batu pecah)

Ukuran maksimum 3.5" : berat minimum 35 kg Ukuran maksimum 3" : berat minimum 30 kg Ukuran maksimum 2,5" : berat minimum 25 kg Ukuran maksimum 2" : berat minimum 20 kg Ukuran maksimum 1,5" : berat minimum 15 kg Ukuran maksimum 1" : berat minimum 10 kg Ukuran maksimum 3A" : berat minimum 5 kg : berat minimum 1 kg Ukuran maksimum 3/8"

Bila agregat berupa campuran dari agregat halus dan agregat kasar, maka agregat tersebut dipisahkan menjadi 2 bagian dengan saringan no. 4. Selanjutnya agregat halus dan agregat kasar disediakan, sebanyak jumlah seperti tercantum diatas.

Benda uji disiapkan sesuai dengan PB'0208-76, kecuali apabila butiran yang melalui saringan no.200 tidak perlu diketahui jumlahnya dan apabila syarat - syarat ketelitian tidak menghendaki pencucian.

IV. PROSEDUR PEMERIKSAAN DAN PENCATATAN DATA

A. PROSEDUR PEMERIKSAAN

- a. Benda uji dikeringkan dalam oven dengan suhu 110° C.
- b. Kemudian hamparkan benda uji pada wadah persegi panjang lalu bagi hamparan tersebut menjadi 4 bagian sama besar.
- c. Ambil satu bagian dan masukkan ke dalam alat pemisah (splinter)
- d. Saring benda uji tersebut dalam saringan 1" dan timbang benda uji yang lolos minimum 5 kg (agregat kasar)
- e. Saring benda uji tersebut dengan saringan 1" dan timbang benda uji yang lolos minimum 500 gram (agregat halus).
- f. Saring benda uji tersebut lewat susunan saringan dengan ukuran paling besar ditempatkan paling atas.
- g. Benda uji yang tertahan diatas masing masing saringan ditimbang dan dihitung prosentasenya terhadap berat sampel.

B. PENCATATAN DATA

Catat data terhadap berat tertahan di masing - masing saringan dalam form data yang tersedia sesuai dengan hasil percobaan dan ketentuan yang ada.

V. ANALISIS DATA DAN PERHITUNGAN

- a. Hitung prosentase berat benda uji yang tertahan diatas masing masing saringan terhadap berat total benda uji.
- b. Hitung komulatif benda tertahan.
- c. Hitung prosentase agregat tertahan pada masing masing saringan.
- d. Hitung persen lolos dengan rumus 100 % persen tertahan.
- e. Dari hasil perhitungan di atas di dapat bahwa % lolos dari masing masing agregat tidak memenuhi spesifikasi yang diharapkan, sehingga agregat tersebut perlu digabung terlebih dahulu sebelum digunakan.
- f. Penggabungan diawali dengan mencampur agregat halus dengan perbandingan 50/50, dari hasil penggabungan itu baru digabung dengan agregat kasar. Dari penggabungan itu dicari perbandingan antara agregat kasar dan agregat halus.
- g. Dari hasil penggabungan didapat perbandingan antara agregat kasar dengan agregat halus sehingga komposisi campuran agregat adalah :

Agregat kasar (batu pecah) Agregat halus (pasir)

h. Dari komposisi campuran diatas kemudian dicari persen lolos dari masing-masing agregat dari tiap saringan, kemudian digambar dalam grafik sehingga tampak bahwa hasil penggabungan kita masuk dalam spesifikasi atau tidak.

VI. KESIMPULAN DAN SARAN

Contoh:

A. KESIMPULAN

Dalam pembuatan campuran beton diperlukan agregat. Agregat yang digunakan adalah agregat kasar (batu pecah) dan agregat halus yang dibedakan atas porsi agregat.

Untuk memperoleh campuran beton yang baik maka gradasi dari agregat harus masuk dalam spesifikasi yang telah ditentukan. Oleh karena itu dibutuhkan tes saringan untuk mendapatkan komposisi agregat yang digunakan. sehingga gradasi dari agregat dapat memenuhi spesifikasi yang telah ditentukan. Dalam percobaan ini didapat perbandingan antara agregat kasar dan agregat halus yaitu dengan komposisi :

Agregat kasar : (%) batu pecah Agregat halus : (%) pasir

B. SARAN

Jumlah sampel yang diuji harus memenuhi standar persyaratan.

PEMERIKSAAN BERAT JENIS DAN PENYERAPAN AGREGAT KASAR

I. PENDAHULUAN

Untuk mengetahui kualitas dari agregat yang dipakai dalam pelaksanaan campuran beton maka harus diketahui sifat yang dimiliki oleh agregat tersebut.

Dalam hal ini yang erat kaitannya adalah berat jenis dan penyerapan agregat, dimana akan dapat mempengaruhi volume agregat dan banyaknya penyerapan terhadap air yang dipakai.

Maksud dari pemeriksaan ini adalah untuk menentukan berat jenis (bulk), berat jenis kering permukaan jenuh (saturated surface dry = SSD), berat jenis semu (apparent) dari agregat kasar yang bertujuan untuk mengetahui berapa besar penyerapan agregat terhadap air dan besarnya nilai factor air semen (FAS) dalam campuran beton, sehingga dapat ditentukan volume agregat dan semen yang efisien sesuai spesifikasi.

II. STANDAR PEMERIKSAAN / PENGUJIAN

- □ AASHTO T-85-74
- □ ASTMD-127-68

III. PERALATAN DAN BENDA UJI

A. PERALATAN

- a. Keranjang kawat ukuran 3,55 mm atau 2,36 mm (no.6 atau no.8) dengan kapasitas kira kira 5 kg.
- b. Tempat air dengan kapasitas dan bentuk yang sesuai untuk pemeriksaan, dilengkapi dengan pipa sehingga permukaan air selalu tetap.
- c. Timbangan dengan kapasitas 5 kg dengan ketelitian 0,1 % dari berat contoh yang ditimbang dan dilengkapi alat penggantung keranjang.
- d. Oven dengan pengatur suhu untuk pemanasan sampai 110° C.
- e. Alat pemisah contoh.
- f. Saringan no. 4.

B. BENDA UJI

Benda uji adalah agregat yang tertahan di atas saringan no.4 diperoleh dari alat pemisah contoh atau cara perempat, sebanyak kira - kira 5 kg.

IV. PROSEDUR PEMERIKSAAN DAN PENCATATAN DATA

A. PROSEDUR PEMERIKSAAN/PENGUJIAN

- a. Cuci benda uji untuk menghilangkan debu atau bahan bahan lain yang melekat pada permukaan.
- b. Keringkan benda uji dalam oven dengan suhu 105° C sampai berat tetap.
- c. Dinginkan benda uji pada suhu kamar selama 1 s/d 3 jam, kemudian timbang dengan ketelitian 0,3 gram (BK).
- d. Rendam benda uji dalam air pada suhu kamar selama 24 jam.
- e. Keluarkan benda uji dari air, keringkan dengan kain penyerap sampai selaput air pada permukaan hilang (SSD), untuk butiran yang besar pengeringan harus satu persatu.
- f. Timbang benda uji kering permukaan jenuh (Bj).
- g. Letakkan benda uji didalam keranjang, goncangkan batunya untuk mengeluarkan udara dan tentukan beratnya didalam air (Ba). Ukur suhu air untuk penyesuaian perhitungan kepada suhu standar (25° C).

B. PENCATATAN DATA

Data dituliskan pada form data yang telah tersedia sesuai dengan hasil percobaan dan ketentuan yang ada.

V. ANALISA DATA DAN PERHITUNGAN

- a. Berat jenis (Bulk Spesific Gravity) $=\frac{Bk}{Bj-Ba}$
- b. Berat jenis kering permukaan jenuh (SJ) = $\frac{Bj}{Bj Ba}$
- c. Berat jenis semu (Apparent Spesific Gravit) = $\frac{Bk}{Bk Ba}$
- d. Penyerapan (Absorption) = $\frac{Bj Bk}{Bk} x100\%$
- Bk = berat benda uji kering oven (gr).
- Bj = Berat benda uji kering permukaan jenuh (gr).
- Ba = berat benda uji kering permukaan jenuh di dalam air (gr).

VI. KESIMPULAN DAN SARAN

Contoh:

A. KESIMPULAN

Dari hasil praktikum diperoleh

- ❖ Harga berat jenis (bulk) : 2,59
- ❖ Harga berat jenis permukaan jenuh (SSD) : 2,63
- ♣ Harga berat jenis semu (Apparent) : 2,70
- ❖ Penyerapan (absorbtion) : 1,50 %

Dari hasil diatas dapat disimpulkan bahwa agregat kasar yang digunakan dalam percobaan ini memenuhi syarat untuk digunakan dalam campuran beton dan penyerapan agregat maksimal yaitu 3 %.

B. SARAN

Diperlukan ketelitian dalam penimbangan benda uji.

Pengeringan/pengelapan benda uji harus benar - benar kering permukaan.

PEMERIKSAAN BERAT JENIS DAN PENYERAPAN AGREGAT HALUS

I. PENDAHULUAN

Untuk mengetahui kualitas dari agregat. yang dipakai dalam pelaksnnaan campuran beton maka harus diketahui sifat yang dimiliki oleh agregat tersebut. Dalam hal ini yang erat kaitannya adalah berat jenis dan penyerapan agregat . dimana akan dapat mempengaruhi volume agregat dan banyaknya penyerapan terhadap air yang dipakai.

Maksud dari pemeriksaan ini adalah untuk menentukan berat jenis (bulk), berat jenis kering permukaan jenuh (saturated surface dry = SSD), berat jenis semu (apparent) dari agregat kasar, yang tujuannya untuk mengetahui berapa besar penyerapan agregat terhadap air dan besarnya nilai factor air semen (FAS) dalam campuran beton, sehingga dapat ditentukan volume agregat dan semen yang efisien sesuai dengan spesifikasi.

II. STANDARPEMERIKSAAN/PENGUJIAN

- AASHTO T-84-74
- ASTMD-128-68

III. PERALATAN DAN BENDA UJI

A. PERALATAN

- a. Timbangan dengan kapasitas 1 kg dengan ketelitian 0,1 gr.
- b. Piknometer dengan kapasitas 500 ml.
- c. Kerucut terpancung (cone), diameter bagian atas 40 mm, diameter bagian bawah 90 mm dan tinggi 75 mm dibuat dari logam dengan tebal minimuni 0,8 mm.
- d. Batang penumbuk dengan bidang penumbuk rata, berat 310 gram, diameter permukaan penumbuk 25 mm.
- e. Saringan no. 4.
- f. Oven dengan pengatur suhu untuk pemanasan sampai 110° C.
- g. Pengukur suhu dengan ketelitian pembacaan 1° C.
- h. Talam.
- i. Bejana tempat air.
- j. Pompa hampa udara (vacuum pump) atau tungku.
- k. Air suling.
- 1. Desilator.

B. BENDA UJI

Benda uji adalah agregat yang lolos saringan no.4 diperoleh dari alat pemisah contoh atau cara perempat, sebanyak kira - kira 100 gram.

IV. PROSEDUR PEMERIKSAAN DAN PENCATATAN DATA

A. PROSEDUR PEMERIKSAAN/PENGUJIAN

- a. Keringkan benda uji dalam oven pada suhu 105° C sampai berat tetap. Berat tetap adalah keadaan berat benda uji selama 3 kali proses penimbangan dan pemanasan dalam oven, dengan selang waktu 2 jam berturut turut, tidak mengalami perubahan kadar air lebih dari 0,1 %.
- b. Dinginkan pada suhu ruang, kemudian rendam dalam air selama 24 jam.
- c. Buang air perendam dengan hati hati, jangan sampai ada butiran yang hilang, tebarkan agregat di talam, keringkan di udara panas dengan cara balik benda uji. Lakukan pengeringan sampai terjadi keadaan kering permukaan jenuh.
- d. Periksa keadaan kering permukaan jenuh dengan mengisikan benda uji kedalam kerucut terpancung, padatkan dengan batang penumbuk selama 25 kali, angkat kerucut terpancung. Keadaan kering permukaan jenuh tercapai bila benda uji runtuh tapi masih dalam keadaan tercetak. Kalau tidak tercapai keringkan lagi.
- e. Keadaan permukaan jenuh tercapai, masukkan 500 gram benda uji ke dalam piknometer.

- f. Masukkan air suling tidak sampai mencapai 90 % isi piknometer , putar sambil diguncang sampai tidak terlihat gelembung udara didalamnya. Untuk mempercepat proses ini dapat dipergunakan pompa hampa udara, tapi harus diperhatikan agar jangan sampai ada air yang ikut terhisap .
- g. Rendam piknometer dalam air dan ukur suhu air untuk penyesuaian perhitungan pada suhu standar 25° C.
- h. Tambahkan air sampai mencapai tanda batas.
- i. Keluarkan benda uji, keringkan dalam oven dengan suhu ll0° C, sampai mencapai berat tetap, kemudian dinginkan benda uji dalam desilator.
- j. Setelah benda uji dingin timbanglah beratnya (Bk), tentukan berat piknometer berisi air penuh dan ukur suhu air guna penyesuaian dengan suhu standar 25° C.

B. PENCATATAN DATA

Data ditulis pada form data yang tersedia sesuai dengan hasil percobaan dan ketentuan yang ada.

V. ANALISA DATA DAN PERHITUNGAN

a. Berat jenis (Bulk Spesific Grass)
$$=\frac{Bk}{\left(B+500-Bt\right)}$$

b. Berat jenis kering permukaan jenuh
$$= \frac{500}{(B + 500 - Bt)}$$

c. Berat jenis semu (apparent) =
$$\frac{Bk}{(B+Bk-Bt)}$$

d. Penyerapan(absorbtion) =
$$\frac{(500 - Bk)x100\%}{Bk}$$

Bk = berat benda uji kering oven (gram)

B = Berat piknometer berisi air (gram)

Bt = Berat piknometer berisi benda uji dan air (gram)

500 = Berat benda uji dalam keadaan kering permukaan jenuh (gram)

VI. KESIMPULAN DAN SARAN

Contoh:

A. KESIMPULAN

Dari hasil praktikum diperoleh:

- Harga berat jenis (bulk) =2,617
- Harga berat jenis kering permukaan jenuh (SSD) = 2,652
- Harga berat jenis semu (Apparent) = 2,707
- Penyerapan (absorbtion) =1,35 %

Dari hasil diatas dapat disimpulkan bahwa agregat halus berupa pasir telah memenuhi syarat untuk digunakan dalam campuran beton dan penyerapan agregat maksimal yaitu 3 %.

B. SARAN

- Diperlukan ketehtian dalam penimbangan.
- Penuangan air harus dilakukan dengan hati hati agar agregat tetap utuh

PEMERIKSAAN KEAUSAN AGREGAT DENGAN MESIN LOS ANGELES

I. MAKSUD DAN TUJUAN

Untuk mengetahui tingkat keausan agregat tersebut, yang dinyatakan dengan perbandingan antara berat bahan aus lolos saringan No.12 (1,7 mm) terhadap berat semula, dalam persen (%).

II. PERALATAN DAN BENDA UJI

A. PERALATAN:

- 1) Mesin Abrasi Los Angeles.
- 2) Saringan No.12 dan saringan-saringan lainnya.
- 3) Timbangan, dengan ketelitian 5 gram.
- 4) Bola-bola baja dengan diameter rata-rata 4,68 cm dan berat masing-masing antara 400 gram sampai 440 gram.
- 5) Oven.

B. BENDA UJI

Benda uji dipersiapkan dengan cara sbb:

- 1) Berat dan gradasi benda uji sesuai daftar.
- 2) Bersihkan dan keringkan benda uji dalam oven pada suhu $110 \pm 5^{\circ}$ C sampai mencapai berat tetap.

III. PROSEDUR PEMERIKSAAN DAN PENCATATAN DATA

A. PROSEDUR PEMERIKSAAN

1. Pengujian ketahanan agregat kasar terhadap keausan dapat dilakukan dengan cara sbb:

Gradasi bahan lolos 19 mm sampai tertahan 9,5 mm.

Jumlah bola baja 11 buah dengan 500 putaran.

- 2. Benda uji dan bola baja dimasukkan ke dalam mesin Los Angeles.
- 3. Putarlah mesin dengan kecepatan 30 s/d 33 rpm, sebanyak 500 putaran.
- 4. Setelah selesai pemutaran, keluarkan benda uji dari mesin kemudian saring dengan saringan No.12, butiran yang tertahan diatasnya dicuci bersih, selanjutnya dikeringkan dalam oven sampai berat tetap.

B. PENCATATAN DATA

Data dituliskan pada form data yang telah tersedia sesuai dengan hasil percobaan dan ketentuan yang ada.

IV. ANALISIS DATA DAN PERHITUNGAN

$$Keausan = \frac{a-b}{a}x100\%$$

Keterangan:

a = Berat benda uji semula, gram.

b = Berat benda uji tertahan saringan no. 12 gram.

V. KESIMPULAN DAN SARAN

Contoh:

Dari percobaan dilaboratorium didapat nilai keausan sebesar 22%.

JOB MIX DESIGN/ JOB MIX FORMULA BETON (RANCANGAN CAMPURAN BETON)

RANCANGAN CAMPURAN RENCANA BETON K. 250
PEKERJAAN/PROYEK: PROGRAM PRAKTIKUM LABORATORIUM

KESIMPULAN DAN SARAN - SARAN:

- 1. Semen yang dipakai agar memenuhi syarat sesuai PB1 Th 1971 atau SU 0013-81 tentang Mutu dan Cara Uji Semen Portland.
- 2. Pasir (Agregat Halus) agar diayak untuk menghilangkan Agregat Kasar yang tercampur, karena Contoh yang dikirim ke Balai Pengujian mengandung Butiran Kasar.
- 3. Batu Pecah (Agrogal Kasar) agar bersih dari kotoran koloran atau lumpur yang akan merugikan Konstruksi Beton, dan untuk tingkat kemudahan pengerjaan maka gradasi batu pecah disarankan agar masuk didalam batas spesifikasi.
- 4. Pelaksaiiaan dilapangan dan ketentuan lainnya, agar mengikuti petunjuk Direksi / Pengawas Lapangan.
- 5. Perhitungan tersebut diatas dihitung berdasarkan Berat Semen I Zak 40 Kg (Volume 32 Liter). sedangkan untuk Berat Semen I Zak 50 Kg (Volume 40 Liter), Perbandingan Volume pada Perhitungan diatas nilainya tetap, tetapi ukuran takaran untuk masing- musing bahan (Batu pecah dan Pasir) agar menyesuaikan Volume Semen 1 Zak 40 Liter atau Berat 50 Kg.
- 6. Rancangan Campuran Rencana diatas hanya berlaku untuk Material yang telah dikirim ke Balai Pengujian Dan Peralatan Pekerjaan Umum Kanwil Propinsi Jawa Tengah.
- 7. Untuk mutu beton diatas K.200 penakaran komposisi campuran dan pelaksanaan produksi menggunakan penakaran berat (SKSNI 1-15 1990 -03 Bab 111 butir 3I sub 2).
- 8. Untuk mendapatkan kepastian Campuran Rencana Laboratorium yang cukup memuaskan, maka perlu membuat Percobaan Campuran 1 benda uji dengan alat pencampur lapangan.

PENGUJIAN SLUMP BETON

I. MAKSUD DAN TUJUAN

Untuk mengetahui tingkat kelecekan pasta beton dengan memperoleh nilai Slump.

II. PERALATAN DAN BENDA UJI

A. PERALATAN:

- 1) Cetakan dari logam tebal minimal 1,2 mm berupa kerucut terpancung (Kerucut Abram) dengan diameter bagian bawah 200 mm, bagian atas 100 mm, dan tinggi 300 mm, bagian bawah dan atas cetakan terbuka.
- 2) Tongkat pemadat dengan diameter 16 mm, panjang 600 mm, ujung dibulatkan dibuat dari baja yang bersih dan bebas dari karat.
- 3) Pelat logam sebagai talam permukaannya kokoh, rata dan kedap air.
- 4) Sendok cekung tidak menyerap air.
- 5) Mistar ukur.

B. BENDA UJI

Sampel benda uji harus dari contoh beton segar yang mewakili campuran beton.

III. PROSEDURPEMERIKSAAN DAN PENCATATAN DATA

A. PROSEDUR PEMERIKSAAN

- 1. Basahilah cetakan dan pelat dengan kain basah.
- 2. Letakkan cetakan diatas pelat dengan kokoh.
- 3. Isilah cetakan sampai penuh dengan beton segar dalam 3 lapis, tiap lapis terisi kira-kira 1/3 isi cetakan, setiap lapis ditusuk dengan tongkat pemadat sebanyak 25 x tusukan secara merata.
- 4. Setelah selesai penusukan, ratakan permukaan benda uji dengan tongkat dan semua sisa benda uji yang jatuh disekitar cetakan harus disingkirkan, kemudian cetakan diangkat perlahan-lahan tegak lurus keatas.
- 5. Balikkan cetakan dan letakkan perlahan-lahan disamping benda uji, ukurlah slump yang terjadi dengan menentukan perbedaan tinggi cetakan dengan tinggi rata-rata benda uji.

B. PENCATATAN DATA

Data dituliskan pada form data yang telah tersedia sesuai dengan hasil percobaan dan ketentuan yang ada.

IV. KESIMPULAN DAN SARAN

Contoh:

Dari percobaan dilaboratorium didapat nilai Slump untuk K.300 sebesar

PEMBUATAN BENDA UJI SILINDER BETON

I. MAKSUD DAN TUJUAN

Untuk memperoleh benda uji berbentuk silinder yang dibuat dan dimatangkan di laboratorium maupun di lapangan.

II. PERALATAN DAN BENDA UJI

A. PERALATAN:

- 1) Cetakan berbentuk silinder ukuran tinggi 30 cm diameter 15 cm
- 2) Tongkat pemadat, diameter 16 mm, panjang 600 mm dengan ujung dibulatkan.
- 3) Mesin pengaduk atau bak pengaduk beton kedap air.
- 4) Timbangan.
- 5) Satu set alat pelapis.
- 6) Peralatan tambahan : ember, sekop, sendok perata, dan talam.
- 7) Satu set alat pemeriksaan berat isi beton.
- 8) Satu set ember besar berisi air atau bak air.

II. BENDA UJIA

Pembuatan dan pematangan benda uji:

- 1) Benda uji dibuat dari beton segar yang mewakili campuran beton.
- 2) Isilah cetakan dengan adukan beton dalam 3 lapis, tiap lapis dipadatkan 25x tusukan secara merata.
- 3) Setelah selesai melakukan pemdatan, ketuklah isi cetakan perlahan-lahan sampai rongga bekas tusukan tertutup, ratakan permukaan beton, kemudian biarkan beton dalam cetakan selama 24 jam dan letakan pada tempat yang bebas dari getaran.
- 4) Setelah 24 jam, bukalah cetakan dan keluarkan benda uji, kemudian rendamlah benda uji pematangan beton (curing). Waktu lamanya pelaksanaan pematangan beton (curing) disesuaikan dengan pesryaratan.

Persiapan Pengujian:

- 1) Ambilah benda uji yang akan ditentukan kekuatan tekannya dari bak perendam/pematangan, kemudian dibersihkan dari kotoran yang menempel dengan kain.
- 2) Ratakan permukaan benda uji dengan caping belerang.
- 3) Timbangan dan catat berat dan ukuran benda uji.
- 4) Benda uji siap diperiksa

PENGUJIAN KUAT TEKAN BETON DENGAN ALAT SCHIMIDT HAMMER (HAMMER TEST)

I. MAKSUD DAN TUJUAN

Untuk mengetahui kuat tekan beton pada konstruksi yang telah jadi yang ada di lapangan setelah beton telah berumur minimal 28 hari.

II. PERALATAN DAN BENDA UJI

- 1. Alat Schimidt hammer.
- 2. Alat kalibrasi Schimidt hammer.
- 3. Alat bantu : meteran, cat/ alat tulis untuk menandai/memberi titik pada lokasi yang akan ditest.

III. PROSEDUR PEMERIKSAAN DAN DATA PENCATATAN DATA

A. PROSEDUR PEMERIKSAAN

- 1. Kalibrasi alat Schimidt hammer yang akan digunakan untuk mengetes.
- 2. Beri titik pada lokasi yang akan dites.
- 3. Tekan alat Schimidt hammer pada titik yang telah ditentukan dan baca grafik yang tertera pada kertas ukur Schimidt hammer.
- 4. Kalibrasi kembali alat Schimidt hammer.

B. PENCATATAN DATA

Data dituliskan pada form data yang telah tersedia sesuai dengan hasil percobaan dan ketentuan yang ada.

IV. KESIMPULAN DAN SARAN

Contoh:

Dari percobaan Hammer Test didapat nilai Kuat Tekan Beton misal sebesar 258.97 Kg/cm2.

KUAT TEKAN BETON DENGAN ALAT SCHIMIDT HAMMER (HAMMER TEST) (SNI 03-4430-1997)

1.1 Maksud dan Tujuan

Untuk mengetahui kuat tekan beton pada konstruksi yang telah jadi yang ada di lapangan setekah beton berumur maksimal 28 hari.

1.2 Alat dan Bahan

- 1. Alat Schimidt Hammer
- 2. Alat kalibrasi Schimidt Hammer
- 3. Alat bantu: meteran, cat/alat tulis untuk menandai/memberi titik pada lokasi yang akan diriset
- 4. Beton yang akan diuji

1.3 Prosedur Pemeriksaan

- 1) Kalibrasi saat alat schimidt hammer yang akan digunakan untuk mengetest.
- 2) Beri titik pada lokasi yang akan ditest
- 3) Tekan alat schimidt hammer pada titik yang telah ditentukan dan baca grafik yang tertera pada kertas ukuran schimidt hammer
- 4) Kalibrasi kembali alat schimidt hammer
- 5) Data dituliskan pada form data yang telah tersedia sesuai dengan hasil percobaan dan ketentuan yang ada

1.4 Pelaksanaan Pengujian

- 1. Letakkan ujung plunyer yang terdapat pada ujung alat hammer test pada titik yang akan ditembak dengan memegang alat hammer test arah tegak lurus atau miring pada permukaan beton yang akan ditest.
- 2. Stel hammer test pada posisi normal, kemudian letakan plunyer pada titik yang akan ditembak dan ditekan secara perlahan-lahan dengan tetap menjaga kestabilan arah dari alat hammer test tersebut. Pada saat ujung plunyer akan lenyap masuk ke sarangnya, dan terjadi tembakan oleh plunyer terhdapa permukaan beton, tekan tombol yang terdapat dekat pangkal alat hammer test.
- 3. Lakukan pengetesan terhadap masing-masing titik tembak yang telah ditetapkan sebelumnya degan cara yang sama sampai seluruh titik tembak selesai dilakukan pegetesen semua.
- 4. Tarik garis vertical dari nilai pantul kekuatan beton sampai memotong kurva yang sesuai dengan sudut tembak alat hammer test, yang dibaca pada grafik hubungan antara nilai pantul kekuatan tekan beton dengan kekuatan tekan beton.
- 5. Besarnya kekuatan tekan beton yang ditest dapat dibaca pada grafik tersebut di atas dengan menarik garis horizontal dan vertical melalui titik potong kurva sudut trembak alat hammer test yang sesuai pelaksaan pengetesen.

1.5 Kelebihan dan Kekurangan Hammer Test

1.5.1 Kelebihan Hammer Test

- 1. Murah, pengetesen dapat dilakukan dengan cepat
- 2. Hasil pengetesen dapat diketahui dengan cepat
- 3. Praktik dan mudah dilaksanakan, tidak merusak

1.5.2 Kekurangan Hammer Test

- 1. Sangat dipengaruhi oleh kerataan permukaan beton, kelembapan dan jenis agregat kasar
 - 2. Keandalannya rendah
 - 3. Hanya memberikan informasi mengenai karakteristik beton pada permukaan

1.6 Tabel Pembacaan Dial Rebound Number & Kuat Tekan

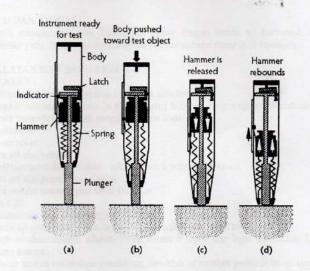
Nilai	α= 0°	a=45°	α=+45°	α=-90°	α=+90°
R	K	K	K	K	K
20	Market III	116		122	and the state of
21		124		135	
22	107	136		148	
23	118	149		158	
24	130	160	FIFTURES IN	170	
25	142	172	106	182	
26	156	184	118	195	
27	168	199	129	210	110
28	180	211	141	222	122
29	193	224	153	235	135
30	206	236	163	250	145
31	220	252	179	265	160
32	233	266	196	278	175
33	248	280	207	292	190
34	262	296	220	308	203
35	278	308	237	322	217
36	293	323	253	337	232
37	307	339	265	352	248
38	322	357	280	368	263
39	338	368	298	382	276
40	352	383	313	397	293
41	368	400	329	412	310
42	383	417	343	428	326
43	400	432	361	442	341
44	417	447	379	457	360
45	433	461	397	472	377
46	448	478	412	490	394
47	464	497	429	505	410
48	482	510	446	520	428
49	498	526	461	538	445
50	517	542	480	555	463

1.6 Pembacaan Hasil Pengujian Hammer Test

- 1. Besarnya nilai Rebound (Rebound Number) tarik garis vertikal dari nilai pantul kekuatan tekan beton sampai memotong kurva yang sesuai dengan sudut tembak alat hammer test, yang dibaca pada grafik hubungan antara nilai pantul kekuatan tekan beton dengan kekuatan tekan beton
- 2. Besranya kekuatan tekan beton K yang diuji dengan hammer test dapat dibaca pada grafik hubungan antara nilai pantul kekuatan tekan beton dengan kekuatan tekan beton dengan menarik garis horizontal melalui titik potong kurva sudut tembak alat hammer test tersebut akan terbaca besarnya kekuatan tekan beton (K)
- 3. Besarnya kekuatan tekan beton (K) yang diuji dengan hammer test dapat juga dibaca pada Tabel Hubungan Nilai Rebound (R) dan Kuat Tekan (K)
- 4. Besarnya kekuatan beton karakteristik tergantung besarnya penyimpangan/standar deviasi yang terjadi dan jumlah titik tembak lokasi yang diuji.

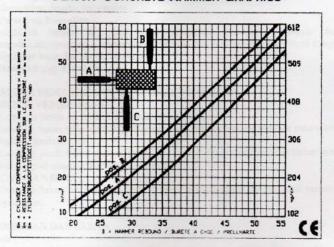
No	Silinder Beton I (R)	Silinder Beton II (R)
1	26	20
2	20	20
3	24	20
4	20	24
5	20	22
6	20	25
7	22	20
8	20	23

Posisi Hammer Test	kebawah	kebawah
Nilai Minimum	20	20
Nilai Maksimum	24	25
Nilai Rata-rata	22	22,5


$$S = [(\Sigma(K-Krt)^2)/(n-1)]^{1/2}$$

Dimana: s = Standar deviasi

K = Kekuatan tekan beton (kg/cm²)


N = Jumlah titik uji lokasi tembak hammer test

1.8 Gambar Skema Potongan Memanjang Palu Uji Beton

1.9 Kurva Hammer Test

CLASSIC CONCRETE HAMMER GRAPHICS

PENGUJIAN KUAT TEKAN BETON DENGAN MESIN COMPRESION TEST

I. MAKSUD DAN TUJUAN

Untuk memperoleh nilai kuat tekan beton dengan benda uji berbentuk kubus atau berbentuk silinder yang dibuat dan dimatangkan di laboratorium maupun di lapangan.

II. PEERALATAN DAN BENDA UJI

A. PERALATAN:

- 1) Cetakan berbentuk kubus atau berbentuk silinder.
- 2) Tongkat pemadat, diameter 16 mm, panjang 600 mm dengan ujung dibulatkan.
- 3) Mesin pengaduk atau bak pengaduk beton kedap air.
- 4) Timbangan.
- 5) Masin tekan.
- 6) Satu set alat pelapis.
- 7) Peralatan tambahan : ember , sekop, sendok perata, dan talam.
- 8) Satu set alat pemerikaan slump.
- 9) Satu set alat pemeriksaan berat isi beton.

B. BENDA UJI

Pembuatan dan pematangan benda uji:

- 1) Benda uji dibuat dari beton segar yang mewakili campuran beton.
- 2) Isilah cetakan dengan adukan beton dalam 3 lapis, tiap lapis dipadatkan 25x tusukan secara merata.
- 3) Setelah selesai melakukan pemadatan, ketuklah isi cetakan perlahan lahan sampai rongga bekas tusukan tertutup, ratakan permukaan beton, kemudian biarkan beton dalam cetakan selama 24 jam dan letakkan pada tempat yang bebas dari getaran.
- 4) Setelah 24 jam, bukalah cetakan dan keluarkan benda uji, kemudian rendamlah benda uji dalam bak perendaman berisi air pada temperature 25° C, dimaksudkan untuk pematangan beton (curing). Waktu lamanya pelaksanaan pematangan beton (curing) disesuaikan dengan persyaratan.

Persiapan Pengujian:

- 1) Ambillah benda uji yang akan ditentukan kekuatan tekannya dari bak peredaman/pematangan, kemudian dibersihkan dari kotoran yang menempel dengan kain.
- 2) Tentukan berat dan ukuran benda uji.
- 3) Benda uji siap diperiksa.

III. PROSEDUR PEMERIKSAAN DAN PENCATATAN DATA

A. PROSEPUR PEMERIKSAAN

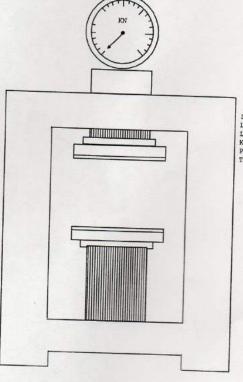
- 1. Letakkan benda uji pada mesin tekan secara centris.
- 2. Jalankan mesin tekan dengan penambahan beban yang konstan berkisar antara 2 sampai 4 kg/cm2 perdetik.
- 3. Lakukan pembebanan sampai benda uji menjadi hancur dan catatlah beban maksimum yang terjadi seiama pemeriksaan benda uji.

B. PENCATATAN DATA

Data dituliskan pada form data yang telah tersedia sesuai dengan hasil percobaan dan ketentuan yang ada.

IV. KESIMPULAN DAN SARAN

Contoh:


Dari percobaan dilaboratorium didapat nilai Kuat Tekan Beton K.300 sebesar 262,222 Kg/cm2 untuk umur 3 hari. Disarankan pengujian paling cepat pada umur 7 hari

VII. Tabel perbandingan kekuatan beton untuk berbagai umur (PBI – 1971, hal 34)

Umur beton (hari)	Portland Cement (biasa)	Portland Cement (kekuatan awal tinggi)
3	0,40	0,55
7	0,65	0,75
14	0,88	0,90
21	0,95	0,95
		1,00
90	1,20	1,15
365	1,35	1,20

VIII. Gambar

GAMBARALAT COMPRESSION TEST

KETERANGAN:
Skalapenunjuk Max150 T
Landasan pemampatatas
Landasan pemampatbawah
Kompresor
Pelindung
Tabung pompa

PEMERIKSAAN KEAUSAN AGREGAT DENGAN MESIN LOS ANGELES (SNI 03-2417-1991)

	adasi eriksaan	Grading: B		Grading: A	
Sar	ingan		I]	II
Lolos	Tertahan	Berat Sebelum (a)	Berat Sesudah (b)	Berat Sebelum (a)	Berat Sesudah (b)
3"	2½"				
21/2"	2"				
2"	1½"				
1½"	1"				
1"	3/4"				
3/4"	1/2"				
1/2"	3/8"				
3/8"	No. 4				
No. 4	No. 8				
Jumlah B	erat Sampel				
Berat Tert	tahan No. 12				

Keausan I.
$$= \frac{a-b}{a} \times 100 \%$$

Keausan I.
$$= \frac{a-b}{a} \times 100 \%$$

Keausan rata-rata =
$$\left(\frac{\text{Keausan I+Keausan II}}{2}\right) \%$$

DAFTAR ISIAN RANCANGAN CAMPURAN BETON

Ukuran Maksimum Agregat Kasar = Kencana Kekuatan Karakteristik Beton = K.

No	Uraian	Jenis Bahan	Hasil Percobaan
	Percobaan di Laboratorium	Semen	
	Menggunakan Silinder Beton	Air	
	Ukuran Ø15 x 30 Cm		
		Agregat Kasar	
		Agregat Halus	
	Koreksi Penyusutan Beton	15 %	
		Semen	
		Air	
		Agregat Kasar	
		Agregat Halus	

Perbandingan Komposisi Campuran Beton = P	C: Agregat	t Halus : A	Agregat Kasar	: Air
Komposisi Campuran Beton =	Kg:	Kg:	Kg:	Kg
Campuran Beton (Dalam Berat) =	:	:	:	

Campuran Beton Dalam $\ 1\ M^3$ akan dibutuhkan Bahan :

Semen = Zak $Pasir = M^{3}$ $Batu Pecah = M^{3}$ Air = Liter

Campuran Beton (Dalam Volume) = : : : :

FORM DATA PEMERIKSAAN KEAUSAN AGREGAT DENGAN MESIN LOS ANGELES (SNI 03-2417-1991)

	adasi eriksaan	Grading : B		Gradi	ng: A
Sar	ringan		I]	П
Lolos	Tertahan	Berat Sebelum (a)	Berat Sesudah (b)	Berat Sebelum (a)	Berat Sesudah (b)
3"	2½"				
2½"	2"				
2"	1½"				
1½"	1"				
1"	3/4"				
3/4"	1/2"				
1/2"	3/8"				
3/8"	No. 4				
No. 4	No. 8				
Jumlah B	erat Sampel				
Berat Tert	tahan No. 12				

II.
$$a = gram$$

 $b = gram$
 $a - b = gram$

II.
$$a = gram$$

 $b = gram$
 $a - b = gram$

Keausan I.
$$= \frac{a-b}{a} \times 100 \%$$

Keausan I. $= \frac{a-b}{a} \times 100 \%$

Keausan rata-rata =
$$\left(\frac{\text{Keausan I+Keausan II}}{2}\right) \%$$

FORM DATA DAFTAR ISIAN RANCANGAN CAMPURAN BETON

Ukuran Maksimum Agregat Kasar = Rencana Kekuatan Karakteristik Beton = K.

No	Uraian	Jenis Bahan	Hasil Percobaan
	Percobaan di Laboratorium	Semen	
	Menggunakan Silinder Beton	Air	
	Ukuran Ø15 x 30 Cm		
		Agregat Kasar	
		Agregat Halus	
	Koreksi Penyusutan Beton	15 %	
		Semen	
		Air	
		Agregat Kasar	
		Agregat Halus	

Perbandingan Komposisi Campuran Beton = Pe	C: Agregat	Halus : A	gregat Kasar	: Air
Komposisi Campuran Beton =	Kg:	Kg:	Kg:	Kg
Campuran Beton (Dalam Berat) =	:	:	:	

Campuran Beton Dalam $\ 1\ M^3$ akan dibutuhkan Bahan :

Semen = Zak $Pasir = M^{3}$ $Batu Pecah = M^{3}$ Air = Liter

Campuran Beton (Dalam Volume) = : : : :

FORM DATA JOB MIX DESIGN CAMPURAN BETON (KLAS B)

PSD SARJANA TERAPAN TEKNIK INFRASTRUKTUR SIPIL DAN PERANCANGAN ARSITEKTUR - UNDIP TAHUN 2020

NO	JENIS KEGIATAN	HASIL	TEST	KETERANGAN
110	JENIS REGIATAN	PERHITUNGAN	LABORATORIUM	KETEKANGAN
1	Kelompok 1, 2, 3, 4	MET	ODE DOE	
	Kuat Tekan Rencana:	K250		
	FAS / MHB	0,58		
	Kebt. Material:			
	Berat Beton (kg)	2380 kg		
	Semen (kg)	365 kg		
	Pasir (kg)	644 kg		
	Kerikil (kg)	1196 kg		
	Air (liter) Perbandingan Berat Mat:	175 liter		
	Smn: Psr: Krk: Air	1:1,76:3,28:0,58		
	Jml Benda Uji Silinder	2 bh		
	Nilai Slump Beton (cm)	10 cm		
	Kuat Tekan Beton	250 kg/cm ²		
	Kuat Tekan Beton K	K375 kg/cm ²		

Semarang,

LABORATORIUM TEKNOLOGI BETON
STUDI SARJANA
TERAPAN TEKNIK
INFRASTRUKTUR SIPIL
DAN PERANCANGAN
ARSITEKTUR,
UNIVERSITAS
DIPONEGORO,
SEMARANG

IR. H. SUHARJONO Sp., MT.

Kebt. Material:	
Berat Beton (kg)	32,60 kg
Semen (kg)	5 kg
Pasir (kg)	8,80 kg
Kerikil (kg)	16,40 kg
Air (liter)	2,90 liter

Perbandingan Berat Material: 1:1,76:3,28:0,58

FORM DATA JOB MIX DESIGN CAMPURAN BETON (KLAS B) PSD PSD SARJANA TERAPAN TEKNIK INFRASTRUKTUR SIPIL DAN PERANCANGAN ARSITEKTUR - UNDIP TAHUN 2020

NO	IENIC KECIATAN	HASIL	TEST	KETERANGAN
NO	JENIS KEGIATAN	PERHITUNGAN	LABORATORIUM	KEIEKANGAN
2	Kelompok 5, 6, 7, 8	METO	ODE DOE	
	Kuat Tekan Rencana:	K250		
	FAS / MHB	0,58		
	Kebt. Material :			
	Berat Beton (kg)	2380 kg		
	Semen (kg)	365 kg		
	Pasir (kg)	637,56 kg		
	Kerikil (kg)	1131,60 kg		
	Air (liter)	175 liter		
	Material Tambahan :			
	Serbuk Kayu (kg)	6,44 kg		
	Biji Limbah Plastik (kg)	64,40 kg		
	Perbandingan Berat Mat:			
	PC : Ag.H : Ag.K : Air	1:1,76:3,28:0,58		
	Jml Benda Uji Silinder	2 bh		
	Nilai Slump Beton	10 cm		
	Kuat Tekan Beton	250 kg/cm ²		
	Kuat Tekan Beton K	K375 kg/cm ²		

Semarang,

LABORATORIUM TEKNOLOGI BETON
PROGRAM STUDI SARJANA
TERAPAN TEKNIK
INFRASTRUKTUR SIPIL
DAN PERANCANGAN
ARSITEKTUR,
UNIVERSITAS
DIPONEGORO, SEMARANG

IR. H. SUHARJONO Sp., MT.

Kebt. Material:	
Berat Beton (kg)	32,60 kg
Semen (kg)	5 kg
Pasir (kg) + Serbuk Kayu	8,71 kg + 0,09 kg
Kerikil (kg) + Biji Limbah Plastik	8,71 kg + 0,09 kg 15,52 kg + 0,88 kg
Air (liter)	2,90 liter
Perbandingan Berat Material :	1:1,76:3,28:0,58

FORM DATA JOB MIX DESIGN CAMPURAN BETON (KLAS B) PSD SARJANA TERAPAN TEKNIK INFRASTRUKTUR SIPIL DAN PERANCANGAN ARSITEKTUR - UNDIP TAHUN 2020

NO	JENIS KEGIATAN	HASIL PERHITUNGAN	TEST LABORATORIUM	KETERANGAN
3	Kelompok 9, 10, 11, 12	MET	ODE DOE	
	Kuat Tekan Rencana:	K250		
	FAS / MHB	0,58		
	Kebt. Material:			
	Berat Beton (kg)	2380 kg		
	Semen (kg)	365 kg		
	Pasir (kg)	644 kg		
	Kerikil (kg)	1196 kg		
	Air (liter)	175 liter		
	Perbandingan Berat Mat:			
	Smn : Psr : Krk : Air	1:1,76:3,28:0,58		
	Jml Benda Uji Silinder	2 bh		
	Nilai Slump Beton (cm)	10 cm		
	Kuat Tekan Beton	250 kg/cm ²		
	Kuat Tekan Beton K	K375 kg/cm ²		

Semarang,

LABORATORIUM TEKNOLOGI BETON
PROGRAM STUDI
SARJANA TERAPAN
TEKNIK
INFRASTRUKTUR SIPIL
DAN PERANCANGAN
ARSITEKTUR,
UNIVERSITAS
DIPONEGORO,
SEMARANG

IR. H. SUHARJONO Sp., MT.

Berat Beton (kg)	32,60 kg
Semen (kg)	5 kg
Pasir (kg) + Serbuk Kayu	8,71 kg + 0,09 kg 15,52 kg + 0,88 kg
Kerikil (kg) + Biji Limbah Plastik	15,52 kg + 0,88 kg
Air (liter)	2,90 liter

| Perbandingan Berat Material : | 1 : 1,76 : 3,28 : 0,58

FORM DATA JOB MIX DESIGN CAMPURAN BETON (KLAS A) PSD SARJANA TERAPAN TEKNIK INFRASTRUKTUR SIPIL DAN PERANCANGAN ARSITEKTUR - UNDIP TAHUN 2020

NO	JENIS KEGIATAN	HASIL	TEST	KETERANGAN
110	JENIS KEGIATAN	PERHITUNGAN	LABORATORIUM	KETEKANGAN
1	Kelompok 1, 2, 3, 4	ME'	TODE DOE	
	Kuat Tekan Rencana:	K250		
	FAS / MHB	0,58		
	Kebt. Material :			
	Berat Beton (kg)	2380 kg		
	Semen (kg)	365 kg		
	Pasir (kg)	644 kg		
	Kerikil (kg)	1196 kg		
	Air (liter)	175 liter		
	Perbandingan Berat Mat:			
	Smn : Psr : Krk : Air	1:1,76:3,28:0,58		
	Jml Benda Uji Silinder	2 bh		
	Nilai Slump Beton (cm)	10 cm		
	Kuat Tekan Beton	250 kg/cm ²		
	Kuat Tekan Beton K	K375 kg/cm ²		

Semarang,

LABORATORIUM TEKNOLOGI BETON
Program Studi Sarjana
Terapan Teknik Infrastruktur
Sipil dan Perancangan
Arsitektur, Universitas
Diponegoro, Semarang

IR. H. SUHARJONO Sp., MT.

Kebt Material		

Perbandingan Berat Material :	1:1,76:3,28:0,58
Air (liter)	2,90 liter
Kerikil (kg)	8,80 kg 16,40 kg 2,90 liter
Pasir (kg)	8,80 kg
Semen (kg)	5 kg
Berat Beton (kg)	32,60 kg

PSD SARJANA TERAPAN TEKNIK INFRASTRUKTUR SIPIL DAN PERANCANGAN ARSITEKTUR - UNDIP TAHUN TAHUN 2020

NO	JENIS KEGIATAN	HASIL PERHITUNGAN	TEST LABORATORIUM	KETERANGAN
2	Kelompok 5, 6, 7, 8			
	Kuat Tekan Rencana:	K250		
	FAS / MHB	0,58		
	Kebt. Material :			
	Berat Beton (kg)	2380 kg		
	Semen (kg)	365 kg		
	Pasir (kg)	644 kg		
	Kerikil (kg)	1196 kg		
	Air (liter)	175 liter		
	Perbandingan Berat Mat:			
	Smn : Psr : Krk : Air	1:1,76:3,28:0,58		
	Jml Benda Uji Silinder	2 bh		
	Nilai Slump Beton (cm)	10 cm		
	Kuat Tekan Beton	250 kg/cm ²		
	Kuat Tekan Beton K	K375 kg/cm ²		

Semarang,

LABORATORIUM TEKNOLOGI BETON
Program Studi Sarjana Terapan
Teknik Infrastruktur Sipil dan
Perancangan Arsitektur,
Universitas Diponegoro,
Semarang

IR. H. SUHARJONO Sp., MT.

Berat Beton (kg)	32,60 kg
Semen (kg)	5 kg
Pasir (kg)	8,80 kg
Kerikil (kg)	8,80 kg 16,40 kg
Air (liter)	2,90 liter

PSD SARJANA TERAPAN TEKNIK INFRASTRUKTUR SIPIL DAN PERANCANGAN ARSITEKTUR - UNDIP TAHUN TAHUN 2020

NO	JENIS KEGIATAN	HASIL PERHITUNGAN	TEST LABORATORIUM	KETERANGAN
3	Kelompok 9, 10, 11, 12			
	Kuat Tekan Rencana:	K250		
	FAS / MHB	0,58		
	Kebt. Material:			
	Berat Beton (kg)	2380 kg		
	Semen (kg)	365 kg		
	Pasir (kg)	637,56 kg		
	Kerikil (kg)	1131,60 kg		
	Air (liter)	175 liter		
	Material Tambahan :			
	Serbuk Kayu (kg)	6,44 kg		
	Biji Limbah Plastik (kg)	64,40 kg		
	Perbandingan Berat Mat:			
	PC : Ag.H : Ag.K : Air	1:1,76:3,28:0,58		
	Jml Benda Uji Silinder	2 bh		
	Nilai Slump Beton	10 cm		
	Kuat Tekan Beton	250 kg/cm ²		
	Kuat Tekan Beton K	K375 kg/cm ²		

Semarang,

LABORATORIUM TEKNOLOGI BETON
Program Studi Sarjana Terapan
Teknik Infrastruktur Sipil dan
Perancangan Arsitektur,
Universitas Diponegoro,
Semarang

IR. H. SUHARJONO Sp., MT.

Kebt. Material:	
Berat Beton (kg)	32,60 kg
Semen (kg)	5 kg
Pasir (kg) + Serbuk Kayu	8,71 kg + 0,09 kg
Kerikil (kg) + Biji Limbah Plastik	15,52 kg + 0,88 kg

Air (liter) 2,90 liter

Perbandingan Berat Material : 1 : 1,76 : 3,28 : 0,58

RANCANGAN CAMPURAN RENCANA BETON (K....)

Contoh:

Ukuran Maks. Agg. Kasar : 1 "

I. PEKERJAAN / PROYEK : PROGRAM PRAKTIKUM LABORATORIUM

II. DATA DATA MATERIAL:

Agregat Halus (Pasir)
 Agregal Kasai (Split)
 Semen Portland
 EX. LABORATORIUM
 EX. LABORATORIUM

- Air setempat/sumur yang menurut Laboratorium memenuhi persyaratan.

III. PERSYARATAN LINGGKUNGAN (Tabel 3 SK SNI. T- 15 - 1990 - 03):

Beton : Diluar ruangan bangunan.

Keadaan : Tidak terlindung dari hujan dan terik matahari langsung.

- FAS = 0,60.

IV. DATA-DATA PEMERIKSAAN LABORATORIUM:

liraian Pemeriksaan	Agregat Halus	Agregat Kasar I	Agregat Kasar II
- Modulus Kehalusan (MK)	2,62 (Sedang)	-	-
- Berat Jenis (SSD)	2,740	2,630	
- Peresapan (Absorbsi)	1,290	1,500	-
- Berat Isi Gembur (SSD)	2,700	2,595	-
- Air Bebas di Lapangan	3%	3%	-
- Ukuran Maksimum Agregat	-	1 ' (25 mm)	-

V. PORTLAND CEMENT:

Berat Isi : 1,25 KG/Dm3

Berat Jenis : 3,15

Berat Per Zak Semen untuk perhitungan ini = 40 Kg.

DAFTAR ISIAN RANCANGAN CAMPURAN RENCANA BETON

Ukuran Maks. Agg. Kasar : 1 "

K.250 Form 1

		TAHEL/	and the second of the second o
30	URALAN	GRAFIK!	HASIL PERHITUNGAN
		PERHITUNGAN	
	<u>.</u>		
-	Kuat Tekan Karakteristik yang disyaratkan	Ditetapkan	K 250 Kg / Cm2 pada umur 28 Hari bagian cacat 5 %
_	Kuat Tekan Beton Rata-	k = 1.64	O'bm = O'bk + 1.64 . \$ =
	rata Kubus 15x15x15 Cm	S = 60	= 250 . + 1.64 . 60 = 348,40 Kg/Cm ²
	Nilai Faktor Air Semen - Maks (Kubus 15x15x15)	Grafik:1	0,52 Ambil nilai terkecil = 0,52
-	Nilai Faktor Air Semen Maks Dalam Lingkungan Khusus	- Tabel: 3 - Tabel: 4 - Tabel: 5	0,60
L	Kebutuhan Air per Zak Semen (40 Kg)	FAS Terkecil x 40 Liter	0,52 x 40 Liter = 20,80 Liter
	- Ukuran Maks Agg - Modulus Kehalusan - Slump Maks yg Diizinkan	Ditetapkan Ditetapkan Ditetapkan	1' Inchi atau (25 mm) 2,62 (Sedang) 10 Cm
2.	Kebutuhan Air per Zak Semen (Slump 7.5 Cm)	Poin 1 dan Tabel: 12.2.2	21,3 Liter / Zak Semen (a) 183 Liter / M3 Beton (b)
3.	Penambahan Air per M3 Beton karena ada peruba han Slump 10 - 7.5 = 2.5 Cm	Lihat Keterangan Tabel: 12.2.2 Poin 2b + 3%	103 % x 183 = 188,49 Ltr/M3 Beton
4.	Faktor Semen = Jumlah Zak Semen per M3 Beton	Poin 3 : Poin 2a	188,49 = 8,849 Zak/M3 Beton
5.	Volume Absolut Semen	Poin 4 x 40 Bj PC x 1000	$\frac{8,849 \times 40}{3,15 \times 1000} = 0,1124 \text{ M}3$
6.	Volume Air	Poin 3 : 1000	188,49 = 0,1885 M3
7.	Volume Pasta Semen	Poin 5 + Poin 6	Jumlah = 0,3009 M3
8.	Volume Absolut Agg Kasar dan Agg Halus	1 - Poin 7	1 - 0,3009 = 0,6991 M3
9.	Prosentase Kebutuhan Agg Halus dari Berat Total Agg		Ukuran Maks Agg Kasar : 1' (25 mm)
	Halus dan Agg Kasar	Tabel : 12.2.2	%Agg Halus + Agg Kasar : 43 %
10.	Volume Absolut Agg Halus	Poin 8 x Poin 9	0,69 91 x 43 = 0,3006 M3
11.	Volume Absolut Agg Kasar	Poin 8 - Poin 10	.0,6991 - 0,3006 = 0,3985 M3
	·		

DAFTAR ISIAN RANCANGAN CAMPURAN RENCANA BETON

Ukuran Maks. Agg. Kasar : 1 "

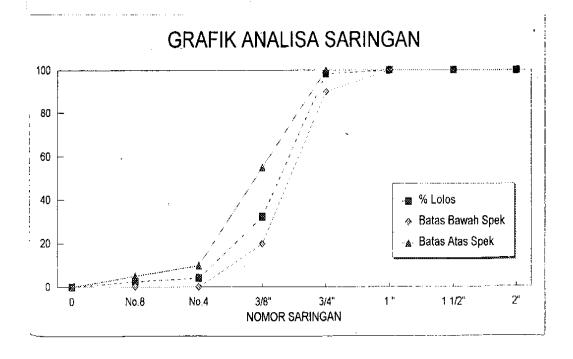
K.250

Form 2

								250
NO.	DRAIAN	TABEL/ GRAFIK PERHITUNGAN 2		NHAI/	HASHL P	ERHI	TUNGA	
				· · · · · ·				
12.	Kebutuhan Bahan untuk 1 M3 Beton :	D : 4 - 40 V	•	B 640	40		252.05	<i>V</i> -
	- Semen - Air	Poin 4 x 40 Kg Poin 3		8,849 x		==	353,97 188,49	
	- Agg Halus SSD	BjxPoin10x1000		-		=	823,72	
	- Agg Kasar SSD	BjxPoin11x1000	2,630 x	0,3985 x	1000	=	1048,08	Kg
13.	Kebutuhan Bahan Untuk 1 Zak Semen :							
	Semen	1 Zak = 40 Kg]			<u>*</u>	40	Kg
1	Air	Poin 2 a	}	022.72	9.040	_		Kg
	Agg Halus SSD	Poin 12 : Poin 4 Poin 12 : Poin 4		823,72 :		=	93,08	-
	Agg Kasar SSD	Poin 12 : Poin 4		1048,08 :	0,049		118,44	<u>~g</u> +
			Jumlah	Seluruh Bah	an	= [_	272,82	Kg
14.	Koreksi Kebutuhan Bahan Akibat Air Bebas 3 %:	Poin 13 Diko - reksi					40	r.
	Semen		31.20.29/	(02.09)	110 44	=	40	Kg
	Air Agg Halus SSD		21,30 -3%	(93,08 + 103% x	-)= =	14,954 95,876	·
	Agg Kasar SSD			103% X		=	121,989	
	Agg Rusu (III)			10,770 .1			121,202	+
			Jumiah	Seluruh Bah	a n	= [2	72,82	Kg
15.	Volume Absolut Semen	40 :(Bj PCx1000)	40 :	(3,15 x	1000)	=	0,0127	M3
1	Volume Absolut A i r	Poin 2a : 1000		21,3		=	0,0213	
	Volume Absolut Agg Halus	13 : Bj Ssdx1000		₹2,740 X	_	=	0,0340	
	Volume Absolut Agg Kasar	13 : Bj Ssdx1000	118,44 :	(2,630 X	1000 >	==	0,0450	M3 +
			Vol Be	eton 1 Batch	1 Zak	=	0,1130	M3
	YIELD	Poin 15: 1 Zak	·	eton 1 Batch mlah Zak Se		= _	0,1130	M3 / Zak .÷
			34		шсп		1	# .
	FAKTOR SEMEN(FS)	1:YIELD		FS =	T YIELD	-	8,849 ——	Zak/M3 Beton
16.	Pebandingan Bahan Beton	dilapangan		PC :	Pasir	;	Bt Peca	h
	Dalam	Berat ukuran l	М3	354,0 :	848,4	:	1079,5	(Kg)
	(Poin 14) : Dalam	Berat ukuran I.	Zak	40 :	95,88	<u>;</u>	121,99	(K g)
	Dalam	Volume	•	40 ;	95,876	:	121,989	
	Ukuran	1 Zak = 40 Kg		1,250	2,700	_	2,595	
		Ū		32 :	35,51	:		Liter
				17ak :	0,036	:		МЗ
	Perban	dingan dalam v	olume	:	1,11	:	1,47	Ì

DAFTAR ISIAN RANCANGAN CAMPURAN RENCANA BETON

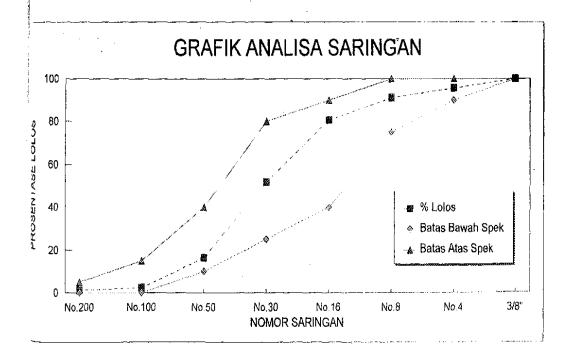
Ukuran Maks. Agg. Kasar : 1 "


K.250 Form 3

DEATAN	Tabel == Grafik == Perhittingan			NILA) / I	IASIL P	ERH	IITUNGA	V.
1	2	ļ			3			
Percobaan Di Laboratorium	-Semen	4	X	3375 x	353,97	=	4,779	Kg
Menggunakan Silinder ukuran 15 x 30 Cm	-Air	4	X		188,49	=	2,545	Kg
	- Agg Halus SSD	4	x	3375 x	823,72	Ξ	11,120	Kg
	- Agg Kasar SSD	4	X	3375 x	1048,08	ā	14,149	Kg
Koreksi Penyusutan Beton	Perlu + 15 %							
	-Semen			4,779 +	15%	=	5,495	Kg
	-Air			2,545 +	15%		2,926	-
	- Agg Halus	SSD		11,120 +	15%	=	12,788	Kg
	- Agg Kasar	SSD		14,149 +	15%	Ξ	16,271	Kg

ANALISA PEMBAGIAN BUTIRAN

SK. SNI. M – 08 – 1989 – F JENIS MATERIAL : BATU PECAH 1"


Ukuran Saringan		Berat Tertahan	KUMULATIF			SPESIFIKASI		
	-	Masing 2	Berat	%	%	Ukuran I		
мм	INCH	Saringan (Gram)	Tertahan	Tertahan (Gram)	Lolos	Batas Bawah	Batas Atas	
50.8	2"	0	0	0	100	100	100	
38.1	1 1/2"	0	0	0	100	100	100	
25.4	1"	· 0	0	0	100	100	100	
19.05	3/4"	169.9	169.9	1.70	98.30	90	100	
9.5	3/8"	6606.03	6775.93	67.80	32.20	20	55	
4.76	No.4	2800.32	9576.25	95.82	4.18	0	10	
2.38	No.8	175,9	9752.15	97,58	2.42	0	5	
						1		
RAT CO	HOTV	9994	GRAM					

ANALISA PEMBAGIAN BUTIRAN

SK. SNI. M – 08 – 1989 – F JENIS MATERIAL : PASIR

Ukuran Saringan 1		Berat Tertahan	KUMULATIF			SPESIFIKASI		
		Masing 2	Berat	%	%	Ukuran I	Maks. 1"	
		Saringan	Tertahan	Tertahan	Lolos	Batas	Batas	
MM	INCH	(Gram)		(Gram)	 	Bawah	Atas	
9.5	3/8"	0.00	0.00	0,00	100	100	100	
4.76	No.4	21.60	21.60	4.32	95.68	90	100	
2	No.8	22.60	44.20	8.84	91.16	75	100	
1.19	No.16	52.50	96.70	19.34	80.66	40	90	
0.59	No.30	143.70	240.40	48.08	51.92	25	80	
0.279	No.50	178.00	418.40	83.68	16.32	10	40	
0.149	No.100	70.30	488.70	97.74	2.26	0	15	
0.074	No.200	5.60	494.30	98.86	1.14	0	5	
RAT COI	NTOH =	500	GRAM	MK =	2.62	<u> </u>		

PEMERIKSAAN BERAT JENIS AGREGAT KASAR

(PB – 0202 - 76) JENIS MATERIAL = BATU PECAH 1"

		А	В	Rata - rata
erat benda uji kering oven	(BK)	6625	5949	6287
lerat benda uji kering ermukaan jenuh (SSD)	(BJ)	6719	6043	6381
erat benda uji didalam air	(BA)	4167	3745	3956

		А	В	Rata - rata
erat jenis (Bulk)	BK (BJ - BA)	2.60	2.59	2.595
erat jenis kering permukaan . nuh (SSD)	BJ (BJ - BA)	2.63	2.63	2.63
erat jenis semu (App)	BK (BK - BA)	2.70	2.70	2.70
enyerapan (BJ - BK) Absorbtion) BK	x 100 %	1.42	1.58	1.50

PEMERIKSAAN BERAT JENIS AGREGAT HALUS

SK. SNI. M – 10 – 1989 – F JENIS MATERIAL = PASIR

			,	
		A	В	Rata - rata
Berat benda uji kering permukaan jenuh	(SSD)	500	500	500
Berat benda uji kering oven Berat Picnometer diisi air 25 C	(BK) (B)	493.1 627.4	493.5 629.5	i .
Berat Picnometer + Benda Uji SSD + Air 25 C	(Bt)	946.1	945.5	945.8
		· · · · · · · · · · · · · · · · · · ·		
		Α	₿	Rata - rata
Berat jenis (Bulk)	BK (B + 500 - Bt)	2.72	2.68	2.70
Berat jenis kering permukaan jenuh (SSD)	500 (B+500-Bt)	2.76	2.72	2.74
Berat jenis semu (App)	BK (B+BK-Bt)	2.83	2.78	2.80
Penyerapan (500 - BK) (Absorbtion) BK	x 100 %	1.26	1.32	1.29

PEMERIKSAAN BERAT ISI SSD (AGREGAT KASAR) JENIS MATERIAL: BATU PECAH 1"

Α.	Berat Tempat + Contoh	24.955	25.060	Kg
B.	Berat Tempat	5.879	5.879	Kg
C.	Berat Contoh	19.076	19.181	Kg
D.	Volume Tempat	14,130	14,130	Dm3
E.	Berat Isi Contoh C / D	1.350	1.357	Kg/Dm3
F.	Rata - Rata		1,354	Kg / Dm 3

PEMERIKSAAN BERAT ISI SSD

(AGREGAT HALUS) JENIS MATERIAL : PASIR

A.	Berat Tempat + Contoh	5,844	5,866	Kg
В.	Berat Tempat	1,824	1,824	Kg
C.	Berat Contoh	4,020	4,042	Kg
D.	Volume Tempat	2,850	2,850	Dm3
E.	Berat Isi Contoh C / D	1.411	1.418	Kg / Dm 3
F.	Rata - Rata		1.414	Kg / Dm 3

PEMERIKSAAN KEAUSAN AGREGAT DENGAN **MESIN LOS ANGELES**

(SNI. 03 – 2417 – 1991)

Gradasi P	emeriksaan	Gradinç	g : B	Grading:		
Saringan Lolos Tertahan		Berat Sebelum (a)	Berat Sesudah (b)	Berat Sebelum (a)	Berat Sesudah (b)	
3" 2 1/2" 2" 1 1/2" 1" 3/4" 1/2" 3/8" No.4	2 1/2" 2" 1 1/2" 1" 3/4" 1/2" 3/8" No.4 No.8	2500 2500			- · · · · · · · · · · · · · · · · · · ·	
•	erat Sample ahan No.12	5000	3900			

gram gram

a - b = 1100 gram

a - b =

gram

Keausan I

 $= \underline{a - b} \times 100\%$ 22

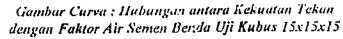
%

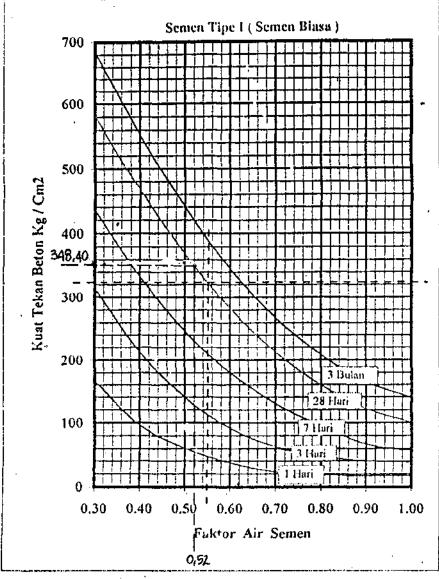
keausan II

keausan rata – rata = 22

%

SAND EQUIVALENT (AASHTO T. 176. 73)


JENIS MATERIAL : PASIR


Nomar Pem	eriksaan		11	Rata - rata
Vaktu Rendam	Mulai	11.20		
(10 ± 1 Menit)	Selesai	11.31		
Vaktu pengendapan (20 ±	1 Menit)	11.52		
embacaan Skala Lumpur	А	5.10		
³ embacaan Skala Pasir	В	5.00		
Sand Equivalent = (B/A) x 100 %	98.04		-

PEMERIKSAAN FRAKSI LUNAK

(SOFT FRAGMENT) (ASSHT. T – 150. – 74)

Berat Sebelum Percobaan	. (A)	5000	Gram
Berat Sesudah Percobaan	(B)	5000	Gram
Berat Yang Terapung	(C)=(A)-(B)	0	Gram
Prosentase Yang Terapung	$(D) = (A) \times (B) \times 100 \%$	0	Gram

	K	FAS
1	125	
2	150	
3	175	}
4	200	
,5	225	
6	250	0.55
7	275	
8	300	
9	350	
10	375	

	σ_{pm}	O"bk ⊕ 1	.64 . S	\mathbf{s}
1	K 125	198.8	Kg/Cm2	
2	K 150 -	223.8		
3	K 175 °	248.8		
4	K 200 =	273.8		
5	K 225 -	298.8		
6	K 230 =	323.8		
7	₹ 275 ~	348.8		•
8	K 300 =	f		
9	K 350 ≈	423.8		
10	K 375	448.8		

PERSYARATAN JUMLAH SEMEN MINIMUM DAN FAKTOR AIR SEMEN MAKSIMUM UNTUK BERBAGAI MACAM PEMBETONAN DALAM LINGKUNGAN KHUSUS

	JUMLAH SEMEN MINIMUM PER M3 BETON (KG)	NILAI FAKTOR SEMEN MAKSIMUM
Beton didalam roang bangonan :		
a. Keadaan keliting non korosif •	275	0.60
 Keadaan keliling korosif disebabkan oleh konden sasi atau uap korosif 	325	0.52
Beton diluar ruangan bangunan :		
a. Tidak terlindung dari hujan dan terik matahari langsung	325	0.60
 b. Terlindung dari hujan dan terik matahari langsung 	275	0.60
Beton yang masuk keda lam tanah :		
Mengalami keadaan basah dan kering berganti - ganti	325	0.55
b. Mendapat pengaruh sulfat dan alkali dari tanah		Lihat Tabel 4
Beton yang kontinue berhubungan dengan :		Lihat Tabel 5
a. Airtawar		:
b. Aiclaut		

TABEL: 12. 2. 2

1	Ukuran	Air	Air	Semen	Pasir . %	Pasir	Bt. Pecah	Pusir	Bt Pecali	Yield M3
	Maks	Liter Per	Liter Per	Zak Per	Thd Bit	Kg Per	Kg Per	Kg Per	Kg Por	Beton
	Agg.	Zuk	- M3	М3	Total	Zuk	Zak	M 3	МЭ	Per Zak
	(mm)	Semen	Beton	Beton	Ацц.	Senien	Semen	Beton	Beton	Semen
	PASIR S	EDANG	, MODU	LUS KE		N 2.60 -	2.90		· · · · · · · · · · · · · · · · · · ·	
	,	2	. 3	4	5	6	7	*	9	10
	19	17.7	188	10.6	45	77	94	814	992	0.095
	25	17.7	183	10.3	40	70	107	725	1099	0,097
	38	17.7	173	9.8	36	68.	124	665	1206	0,103
	51	17.7	163	9.2	33	58	138	627	1271	0.109
	19	19.5	188	9.6	46	97	102	840	983	0.104
	25	19.5	183	9.4	41	1-1	117	750	1093	0.107
	38	19.5	173	8.9	37	79	134	702	1199	0.112
	51	19,5	163	8.4	34	79	153	659	1283	0.12
	19	21,3	188	8.8	47	100	113	879	992	0.114
>	25	(21.3)	(183)	8.7	(13)	92	126	793	1087	0.129
-	38 🗍	21.3	173	1.8	38	90	i47	725	1118	0.124
i	51	21.3	163	7.7	35	90	166	686	1279	0.131
	19	23.1	188	8.2	48	109	119	894	980	0.122
	2.5	23.1	183	0.8	43	102	136	814	1084	0.126
ſ	38	23.1	173	7.5	39	100	158	754	1180	0.133
Į	51	23.1	163	7.2	36	100	177	713	1259	0.154
1	19	24,8	188	7,5	19	124	130	930	980	0.133
-	25	24.8	183	7.4	44	115	145	849	1069	0.136
-	38	24.8	173	7.0	40	113	168	787	1173	0.144
Ţ	51	24.8	163	6.6	37	113	192	740	1259	0.153
	19	26.6	188	7.1	50	134	134	953	953	0.154
	25	26.6	183	6.8	45	127	156	873	1063	0.147
	38	26.6	173	6.6	41	124	177	811	1558	0.153
-	51	26.6	163	6.1	38	124	205	757	1253	0.163
1	. 19	28.4	188	6.7	51	147	141	986	942	0.151
ſ.	25	28.4	183	6.4	46	141	164	903	1051	0.156
1	38	28,4	173	6.1	. 42	136	188	838	1149	0.163
L	51	28.4	163	5.7	39	138	217	790	1242	0.175

Catatan:

- 1. 1 Zak Semen = 40 Kg.
- 2. Campuran Beton untuk Slump 75 mm. untuk tiap tiap penambahan atau pengurangan Slump sebesar 25 mm harus ditambahkan atau dikurangkan Air sebanyak 3 % per m3 beton.
- 3. Kemudian hitung kembali jumlah semen dan agregat untuk mempertahankan mutu beton.
- 4. Untuk Perkerasan Jalan kurangi Pasir sebanyak 4 Kg dan Air sebanyak 5 Liter per m3 beton.
- 5. Ukuran mm dalam inch (")

19 mm = $\frac{3}{4}$ "

25 mm = 1"

38 mm = $1\frac{1}{2}$ "

 $51 \, \text{mm} = 2 \, \text{"}$

SPESIFIKASI AGREGAT KASAR (SPEC DARI BUKU 3)

No. #	Agregat Halus	BATUPECAH			
2 ¹¹ / ₂ /5		100	-	-	-
1 1/2"		95 - 100	100	•	-
1"			95 - 100	100	-
3/411		35-70		90 - 100	100
1/2"		·	25 - 60	•	90 - 100
3/8"	100	10-30		20 - 55	40 - 70
#4	95 - 100	0-5	0 - 10	0 - 10	0 - 15
#8	•	•	0 - 5	0 - 5	0 - 5
#16%	45 - 80	7	•	-	•
#50	10 - 30	•	•	- ,	•
#100	2 - 10	, .	•		-

BETON	MAKS	«KADAR SEMEN			
KLAS	PAS	-MIN	MAKS		
HVK450	0.40	415	425		
111/K350	0.45	350	400		
111/K400	0.45	365	400		
111/K350	0.45	350	400		
HVK275	0.50	340	400		
II/K225	0.52	325	350		
I/K175	0.57	270	300		
I/B 0	0.65	200	250		

Kg/M3

PEMERIKSAAN KUAT TEKAN

Contoh	Tanggal	Berat	Berat Isi	Luas Bidang	Tanggal	Umur		KEKUATAN TEKA	٨N	Prakiraan	Keterangan
Nomor	Cor	Gram	Kg / dm3	Cm2	Pemeriksaan	Hari	Ton	Ukuran	Kg / Cm2	Umur 26 Hari	_
1,	05 - 08 - 00	8243	2.44	3375	08 - 08 - 00	3	44	(15 x 15 x 15):	195.56	488.89	K - 250
2.	05 - 08 - 00	8185	2.43	3375	08 - 08 - 00	3	45	(15 x 15 x 15)	200.00	500.00	K - 250
3.	05 - 08 - 00	8412	2.49	3375	08 - 08 - 00	3	53	(15 x 15 x 15)	235.56	588.89 ¹	K - 225
4.	05 - 08 - 00	8477	2.51	3375	08 - 08 - 00	3	5 5	(15 x 15 x 15)	244.44	611.11	K - 225
5.	05 - 08 - 00	8195	2.43	3375	08 - 08 - 00	3	59	(15 x 15 x 15)	262.22	655.56	K - 300
6.	05 - 08 - 00	8238	2.44	3375	08 - 08 - 00	3	56	(15 x 15 x 15)	248.89	622.22	K - 300

PC; Ex. Laboratorium1 Psi: 0.07031 Kg / Cm2Pasir: Ex. Laboratorium1 KN / MM2: 10.20 Kg/Cm2Batu Pecah: Ex. LaboratoriumLuas Silinder: 176.715 Cm2

Air : Ex. Laboratorium Isi Silinder : 5301.45 Cm3

Komposisi

PEMERIKSAAN MUTU BERON DENGAN ALAT HAMMER

DEAN	BACAAN LAPA	E AN	~ 50	(49 -0PW)	
rem)		NC3P41	06		
	RATA-RATA	-	g' b	(g' b - g' bm)2	METERANICANI / EV/ALLIACI
R			((/- / () - 1)	(//a / Cm2)	KETERANGAN / EVALUASI
(Er)	(Er) x 80	a°	(Kg / Cm2)	(Kg / Cm2)	
n	n 79				
20	20.40	0.0	276	מר לדני	g = 0°
38	38.48	0°	376	277.22	y - 0
37	37. 47	0°	358	1,200.62	
42	42.53	0°	470	5,983.02	
40	40.51	0°	433	1,628.12	
32	32.41	0°	273	14,316.12	
36	36. 46	0°	340	2,772.02	vana
40	40.51	0°	433	1,628.12	
37	37.47	0°	358	1,200.62	PERHITUNGAN :
35	35.44	0°	326	4,442.22	<u></u>
39	39.49	0°	397	18.92	DS = \ / E1(gbm-gbm)2
35	35.44	0 0	326	4,442.22	n-1
34	34.43	0°	307	7,335.92	,
35	35.44	. 00	326	4,442.22	DS = 81.51
40	40.51	0 °	433	1,628.12	
33	33.42	0 °	287	11,161.92	
38	38.48	0 °	376	277.22	$gbk = gbm - (1.64 \times DS)$
47	47.59	0 °	567	30,397.92	
46	46.58	0 °	547	23,823.92	4 bk = 258.97 Kg / Cm2
42	42.53	0 °	470	5,983.02	
41	41.52	0 °	450	3,289.02	
••		_	, ,,,,	0,2000	
				į	
		<u> </u>	J'bm		
	•			E1(g'b - g'bm)2	
= 0.070	31 kg/cm2		9000	(85 85/11/2	
= 0.07031 kg/cm2 'mm2 = 10.2 Kg/Cm2		•	392.65	126,248.55	•
1111112 -	10.2 1\g / \Citiz		JJZ.00	124,240,00	
				1	